Phase portraits of uniform isochronous quartic centers
نویسندگان
چکیده
In this paper we classify the global phase portraits in the Poincaré disc of all quartic polynomial differential systems with a uniform isochronous center at the origin.
منابع مشابه
Uniform isochronous cubic and quartic centers: Revisited
In this paper we completed the classification of the phase portraits in the Poincaré disc of uniform isochronous cubic and quartic centers previously studied by several authors. There are three and fourteen different topological phase portraits for the uniform isochronous cubic and quartic centers respectively.
متن کاملComplexity reduction of C-Algorithm
The C-Algorithm introduced in [5] is designed to determine isochronous centers for Lienard-type differential systems, in the general real analytic case. However, it has a large complexity that prevents computations, even in the quartic polynomial case. The main result of this paper is an efficient algorithmic implementation of C-Algorithm, called ReCA (Reduced C-Algorithm). Moreover, an adapted...
متن کاملBifurcation of Limit Cycles from Quartic Isochronous Systems
This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upper bound can be reached. In addition, we study a family of perturbed isochronous systems and prove th...
متن کاملBifurcation of Critical Periods from a Quartic Isochronous Center
This paper is focused on the bifurcation of critical periods from a quartic rigidly isochronous center under any small quartic homogeneous perturbations. By studying the number of zeros of the first several terms in the expansion of the period function in ε, it shows that under any small quartic homogeneous perturbations, up to orders 1 and 2 in ε, there are at most two critical periods bifurca...
متن کاملGlobal Phase Portraits of Kukles Polynomial Differential Systems with Homogenous Polynomial Nonlinearities of Degree 5 Having a Center
We provide the 22 different global phase portraits in the Poincaré disk of all centers of the so called Kukles polynomial differential systems of the form ẋ = −y, ẏ = x + Q5(x, y), where Q5 is a real homogeneous polynomial of degree 5 defined in R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 287 شماره
صفحات -
تاریخ انتشار 2015